Discussion of Use It or Lose It: Efficiency Gains from Wealth Taxation by Fatih Guvenen, Gueorgui Kambourov, Burhan Kuruscu, and Daphne Chen

Maxim Troshkin

40th Federal Reserve Bank of St. Louis Conference October 15, 2015

Main focus so far:

- Motivate non-equivalence between τ_k and τ_w
 - aka "net" and "gross capital tax"
- Calibrate to US: match top 1% and 10% wealth
- Experiment: set $\tau_k = 0$, find τ_w to balance gov't budget
 - not optimizing yet
- Compare welfare and output in two steady states
 - evaluate efficiency gains vs. distributional concerns

Overview:

- Raises stimulating questions, especially given recently renewed interest in
 - wealth distribution
 - (world-wide) wealth tax
- Important to understand qualitatively:
 - why τ_k could be non-equivalent to τ_w
- Important to evaluate quantitatively:
 - effects of replacing (amending) τ_k with τ_w

Key elements:

- 1. r_i heterogeneity of returns
- 2. $r_i \nleftrightarrow r_j$ capital market friction (particular inc. mkts)

3.
$$au_k\left(\mathit{ra}
ight)= au_k$$
 - linear tax (equivalently for au_w)

Comments:

- 1. needed for wealth distribution in standard models
- 2. paper treats as limit case (investment autarky)
 - should really think of z_i heterogeneity as including transaction costs
 - calibrating to actual returns heterogeneity implies that?
- 3. needed to stop gov't from circumventing 2
 - linear is not key, restricted is key

Simple arithmetic:

Alice owns a_A , gets return r_A Bob owns a_B , gets return r_B

Revenue-neutral experiment needs:

$$au_k$$
r_Aa_A + au_k r_Ba_B = $au_w \left(1 + r_A
ight)$ a_A + $au_w \left(1 + r_B
ight)$ a_B

• if
$$r_A = r_B = r$$
 then

$$\tau_{k}r\left(\mathbf{a}_{A}+\mathbf{a}_{B}\right)=\tau_{w}\left(1+r\right)\left(\mathbf{a}_{A}+\mathbf{a}_{B}\right)$$

and no distinction as in standard inc. mkts with $\tau_k = \tau_w \frac{1+r}{r}$ \blacktriangleright if $r_A \neq r_B$ then need

$$au_k = au_w rac{\left(1+ extsf{r_A}
ight) extsf{a}_A + \left(1+ extsf{r_B}
ight) extsf{a}_B}{ extsf{r_A} extsf{a}_A + extsf{r_B} extsf{a}_B}$$

• More generally: non-equivalence if mapping depends on *a* But note: arbitrarily non-linear $\tau_w(a)$ can undo this

Example from paper

	Capital Income Tax		Wealth Tax	
	$r_1 = 0\%$	$r_{2} = 20\%$	$r_1 = 0\%$	$r_2 = 20\%$
Wealth	1000	1000	1000	1000
Pre-tax Income	0	200	0	200
Tax rate	$\tau_k = \frac{50}{200} = 0.25$		$\tau_w = \frac{50}{2200} = 2.27\%$	
Tax liability	0	50	$1000 \tfrac{50}{2200} \approx 23$	$1200\frac{50}{2200} \approx 27$
After-tax rate of return	0	$\frac{200-50}{1000} = 15\%$	$-rac{23}{1000} = -2.3\%$	$\frac{200-27}{1000} = 17.3\%$
After-tax Wealth Ratio	$W_2/W_1 = 1150/1000 = 1.15$		$W_2/W_1 = 1173/977 \approx 1.20$	

• example of arbitrarily non-linear $\tau_w(a)$:

• $au_w = 0$ for a < 1200 and $au_w = 0.25$ otherwise

Experiment results under non-equivalence: intuitive starting point

- Consider next steps in the paper:
- 1. Take into account transitions
- 2. Add uncertainty in returns during life-cycle
- 3. Optimize non-linear τ_w

Next step 1

Transitions:

- potentially important
- current results suggest some cohorts may be worse off
- interesting to ask about political support with many cohorts

Uncertainty in returns during life-cycle:

important but secondary to accounting for potential responses of r_i to policy:

- currently key for τ_w effects: distribution of r_i
- but no way for the distribution to respond to au_w
- seems important qualitatively and for realism
- for example, via (Ben-Porath) human capital?

Next step 3

Optimize non-linear τ_w :

- note: no disutility of entrepreneurial effort
- without efficiency-equity trade-off (SWF?), why not confiscatory tax (except for the highest r_i)?
- key concern: arbitrary non-linearity (see above)?
 - ▶ for example, asymmetric info still implies positive tax: IEE still holds with R replaced by [R (a) + aR' (a)] > 0

Related quantitative comments:

• Quantitative realism: probably need some non-linearity in au_k

- for example, short-term capital gains taxation
- also "[Set] τ₁ to be 30 percent, consistent with the current US economy"?

▶ Back-of-the-envelope measure of friction from *r_i*-distribution:

$$\begin{aligned} \tau_k^* - \tau_k^{calibrated} &= \tau_w^* \frac{1 + \bar{r}}{\bar{r}} - 0.25 \\ &= 0.0215 \frac{1 + 1/\beta}{1/\beta} - 0.25 \\ &= 0.45 - 0.25 = 0.20 \end{aligned}$$